

# **Building Networks for the** 22<sup>nd</sup> Century

**Bruce Nordman** 

**Lawrence Berkeley National Laboratory** 

February 13, 2009



BNordman@LBL.gov — eetd.LBL.gov/EA/Nordman



## **Background**

This presentation



#### In Scope

- · Residential buildings
- Commercial buildings
- Human beings

## Not in Scope

- Industrial energy use
- Sensor networks
- The meter
- Anything on the grid side of the meter



Slide 3 of 19

LAWRENCE BERKELEY NATIONAL LABORATORY

Alternative: Networks for the 20th Century

Decisions made "today" will be with us for generations Our obligation: design best building networks we can





Networks (standards; many layers) - IEEE, Ecma, IEC, CEA, ...





ecma

## This presentation

User interfaces



High ratio of assertions to explanations

- Pleased to continue discussion later



Slide 4 of 19



- Electronic networks (IT, CE)
  - Information Technology, Consumer Electronics

**Fundamentals** 

- Basis: Information
- Functionality: Well-developed
- Energy: Mixed results

## **Building networks**

- Lighting, climate, appliances, misc., security\*, ...
- Basis: Physics
- Functionality: Not well developed
- Energy: Too early to say



- Context
- Not inevitable that building networks will save energy Networks of IT and CE products significantly increased energy use
  - We have much to learn from electronic networks and Internet; theory and reality
- Much (most?) activity in building networks is driven by short-term business interests, not saving energy
- "Home Automation" to date rarely informed by energy
- Building networks best understood as a means to provide functionality, NOT as a means to save energy



## **Core Principle**



## Universal Interoperability

Any device should work with all other objects in any space

- Across building types
  - Residential, commercial, vehicles, ...
- Across geography
  - Countries, language, ...
- Across time
  - Worthy of durability
- Across people
  - Age, disability, culture, activity / context
- Across end uses
  - Coordination, cooperation



## **Standard Concepts**



- Building elements (energy using or not)
- Lights, climate control devices, windows, displays, rooms, sensors, appliances, ...
- Ideas
  - Presence, schedules, prices, events, ...
- Characteristics
  - Physical location, power levels, light
- Actions
  - Dim, open, go to sleep, ...
  - Announcing and requesting

Concept of "affordances"



Slide 9 of 19

LAWRENCE BERKELEY NATIONAL LABORATORY

## **Role of People**



- People often absent from design, presentation
- Humans are best understood as nodes on the network
  - Even more than portable electronics, they move
- People, like devices, need standard interfaces
  - Nature of interface different, but principle same
- User interface design should be starting point
  - Then create dictionary
  - Then design protocols
- Ensure that devices are adaptable to different people
  - Needs, desires, capabilities



## Key challenge



## Representation of real world in information world

- Need a standard "dictionary" of things, ideas, principles, actions, etc.
  - Embody these in protocols, data dictionaries
  - Embody in user interfaces
- Standardization of core ideas, terms, and underlying metaphors
  - the meaning (semantics) of the information
  - not how it is encoded or represented (except in the UI)



Slide 8 of 19

## **Standard Concepts Elsewhere**



- Those reflected in User Interfaces
  - Tape transport: Play, pause, stop, fast-forward, eject, ...
- **Document conventions** 
  - Fonts, margins, headings, columns, ...
  - Web page conventions: forward, back, navigation, links, ...
- Data and File formats
  - ASCII, PDF, HTML, ...
- **Email conventions** 
  - Structure, addressing, ...



Slide 10 of 19

AWRENCE BERKELEY NATIONAL LABORATORY

### **User Interfaces**



- Standard Interface elements common throughout daily life
- Key to safety, ease of use, efficiency
- Many use graphics, color, location, etc. to improve functionality and reduce languagedependence
- Commonality limited to comprehension needs
- Can deviate from standards when there is good reason





Slide 12 of 19

### **User Interfaces**

Terms

Symbols

Metaphors

Colors

Key Elements



- · Consistent across:
  - Manufacturers
  - Products
  - Countries
- Simple
- Accessible
- Portable







LAWRENCE BERKELEY NATIONAL LABORATORY Slide 13 of 19

## Non-Interoperability



- · Failure to accomplish interoperability:
  - Causes confusion oland (type E)





Manufacture / Sales

- Wastes energy







ENERGY FFICIENT DIGITAL NETWORKS

Slide 14 of 19

## Complexity





While some integrators are skeptical about the prewired, reprogrammed NHS rack from Sony, others embrace the solution for its simplicity.

- Complexity is easy
- Ordinary outcome
- Simplicity (and power) is hard
  - Doable
  - Well worth effort



Slide 15 of 19

## **Technical Approaches**



- Adopt standard network technology up through TCP/IP for building networks
  - No reason to duplicate
  - Need to share infrastructure and interoperate with electronic devices
  - Want connectivity to Internet
- Be prepared to jettison any/all existing technology
  - For product, standards design only
  - Need gateways to legacy systems for extended period
- Path to future requires some "leaps" in technology and standards

LAWRENCE BERKELEY NATIONAL LABORATORY

- Incrementalism alone is the path to mediocrity
- If devices interoperable with people, much easier to be interoperable with each other

ENERGY FFICIENT DIGITAL NETWORKS

Slide 16 of 19

## **Next Steps**



- Adopt goal of "Universal Interoperability" and use of IPv6
- Organize all relevant standards orgs. to play proper role; engage Rest of World
- Create Building Network Task Force (BNTF) as sibling to Internet Engineering Task Force (IETF)
- --IETF is part of Internet Society (isoc.org)
- Fund academic research on key topics
  - Network architecture
  - Presence, authority, security, user interfaces, protocol design, ...
- Revisit related topics in light of this
  - Real-time pricing, demand response, "smart grid", ...
- Get started ASAP



What about the "Smart Grid"



- If the "Smart Grid" stops at the meter:
  - I have nothing to say
- If the "Smart Grid" extends through the meter:
  - (I assume real-time pricing; don't care how transmitted)
  - Suggests one architecture that extends from power plant to each end-use device
  - Will impede improvements in grid
  - Will impede improvements in buildings
  - No barrier to occasional "opt-in" agreements / exchanges between devices and outside entities ENERGY
  - · Demand response, local generation and storage, ...
  - The meter is our friend



Slide 18 of 19

